• English
    • español
    • português (Brasil)
  • English 
    • English
    • español
    • português (Brasil)
  • Login
View Item 
  •   COVID-19
  • Resources in English
  • Technical documents and research evidence on COVID-19
  • View Item
  •   COVID-19
  • Resources in English
  • Technical documents and research evidence on COVID-19
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Zika Research Projects List: Utilizing Nontraditional Data Sources for Near Real-Time Estimation of Transmission Dynamics During the 2015-2016 Colombian Zika Virus Disease Outbreak

 
Thumbnail
Date
2016-06
Author
MS, Majumder
M, Santillana
SR, Mekaru
et al.
Metadata
Show full item record
Abstract
Approximately 40 countries in Central and South America have experienced local vector-born transmission of Zika virus, resulting in nearly 300,000 total reported cases of Zika virus disease to date. Of the cases that have sought care thus far in the region, more than 70,000 have been reported out of Colombia. OBJECTIVE: In this paper, we use nontraditional digital disease surveillance data via HealthMap and Google Trends to develop near real-time estimates for the basic (R) and observed (Robs) reproductive numbers associated with Zika virus disease in Colombia. We then validate our results against traditional health care-based disease surveillance data. METHODS: Cumulative reported case counts of Zika virus disease in Colombia were acquired via the HealthMap digital disease surveillance system. Linear smoothing was conducted to adjust the shape of the HealthMap cumulative case curve using Google search data. Traditional surveillance data on Zika virus disease were obtained from weekly Instituto Nacional de Salud (INS) epidemiological bulletin publications. The Incidence Decay and Exponential Adjustment (IDEA) model was used to estimate R0 and Robs for both data sources. RESULTS: Using the digital (smoothed HealthMap) data, we estimated a mean R0 of 2.56 (range 1.42-3.83) and a mean Robs of 1.80 (range 1.42-2.30). The traditional (INS) data yielded a mean R0 of 4.82 (range 2.34-8.32) and a mean Robs of 2.34 (range 1.60-3.31). CONCLUSIONS: Although modeling using the traditional (INS) data yielded higher R estimates than the digital (smoothed HealthMap) data, modeled ranges for Robs were comparable across both data sources. As a result, the narrow range of possible case projections generated by the traditional (INS) data was largely encompassed by the wider range produced by the digital (smoothed HealthMap) data. Thus, in the absence of traditional surveillance data, digital surveillance data can yield similar estimates for key transmission parameters and should be utilized in other Zika virus-affected countries to assess outbreak dynamics in near real time.
URI
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4909981/pdf/publichealth_v2i1e30.pdf
Collections
  • Technical documents and research evidence on COVID-19

Browse

AllCommunities & CollectionsBy Issue DateAuthorsTitlesCategorySubjectsThis CollectionBy Issue DateAuthorsTitlesCategorySubjects

My Account

LoginRegister

Pan American Health Organization
World Health Organization. Regional Office for the Americas
525 Twenty-third Street, N.W., Washington, D.C. 20037, United States of America

Content Disclaimer (Important notes about the material)

Links

  • WHO International Clinical Trial Registry Platform (ICTRP)
  • WHO Coronavirus disease R&D Blueprint
  • WHO Database of Publications on Coronavirus Disease
  • PAHO Coronavirus Disease
  • PAHO/BIREME Windows of Knowledge COVID-19
  • Evidence aid Coronavirus (COVID-19) resources

  • PAHO Digital Library (IRIS PAHO)
  • Virtual Health Library (VHL)
  • Global Index Medicus (GIM)